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Abstract

We consider the optimal servicing of a queue with sigmoideseperformance. The sigmoid server performance occurariows
domains including human decision making, visual perceptimman-machine communication and advertising respdrsetasks
arrive at a given rate to the server. Each task has a deatiiéstincorporated as a latency penalty. We investigatér#uke-df

between the reward obtained by processing the current tastha penalty incurred due to the tasks waiting in the quélgestudy
this optimization problem in a Markov decision process (ME@8mework and show that the MDP formulation is equivalenat
certainty-equivalent problem. We determine the recedumigbn servicing policy for the queue and show that the oalipolicy

may drop some tasks, that is, may not process a task at allh&vedevelop an adaptive policy that incorporates all thdable

information about the current tasks and show that the adaptlicy improves the performance significantly. Finallyg present
a comparative study of the receding horizon policy for theadety-equivalent problem and the adaptive policy. We algggest
guidelines for the design of such queues.

Keywords: optimal control of queues, non-submodular optimizatiagm®id utility, human decision making

1. Introduction sigmoid function also models the quality of human-machine
communication [27], the human performance in multiple ¢éarg

The recent national robotic initiative [10] underlinesawative ~ search [12], the advertising response function [26], ardth

robotics research and applications emphasizing the a¢imliz ~ pected profit in simultaneous bidding [17]. Therefore, thala

of co-robots acting in direct support of and in a symbiotiate ysis presented in this paper can also be used to determine op-

tionship with human partners. Such co-robots will facithet-  timal human-machine communication policies, optimal slear

ter interaction between the human partner and the automatostrategies, the optimal advertisement duration allonatand

In complex and information rich environments, one of the keyoptimal bidding strategies. In this paper, we genericafgrto

roles for these co-robots is to help the human partfimiently  the server with sigmoid performance as a human operator and

focus her attention. A particular example of such a setting i the tasks as the decision making tasks. When a human opera-

the surveillance mission, where the human operator manitortor has to serve a queue of decision making tasksal time,

the evidence collected by the autonomous agents [5, 7]. Thie tasks (e.g., feeds from camera) waiting in the queue lose

excessive amount of information available in such systeins o value continuously. This tradeffdbetween the correctness of

ten results in poor decisions by the human operator [23]s Thithe decision and the loss in the value of the pending tasks is o

emphasizes the need for the development of a support systegnitical importance for the performance of the human operat

that helps the human operator optimally focus her attention In this paper, we address this trad&-@nd determine the opti-

o . . . mal duration allocation policies for the human operatovisgr
Recently, there has been significant interest in understgnd a decision making queue.

the physics of human decision making [4]. Several mathe-

matical models for human decision making have been protnere has been significant interest in the study of the perfor
posed [4, 15, 27]. These models suggest that the correcinegsnce of a human operator serving a queue. In an early work,

of the decision of a human operator in a binary decision makgcpmigt [21] models the human as a server and numerically
ing scenario evolves as a sigmoid function of the time-domat ¢, jies a queueing model to determine the performance of a

allopa_lted for the decision. Thu§, the probability of thereor. human air tréiic controller. Recently, Savla et al [20] study
decision by a human operator increases slowly for small-timey, ,man supervisory control for unmanned aerial vehicle oper

duration allocations and high time-duration allocaticarsd in-  4ions: they model the system by a simple queuing network
creases quickly for moderate time-duration allocation$ie T with two components in series, the first of which is a spatial

- . queue with vehicles as servers and the second is a convahtion
HThis work has been supported in part by AFOSR MURI Award FAB55

07-1-0528. A preliminary version of this work [25] entitleddsk release con- queue Wlth hu_man operators as servers_. They.d.eSIQn jO_Int_mO-
trol for decision making queues” was presented at Americartréb@onfer- 10N coordination and operator scheduling policies thatimi

ence, 2011, San Francisco, CA. mize the expected time needed to classify a target aftepits a
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pearance. The performance of the human operator based on Her the design of decision making queues.
utilization history has been incorporated to design makima
stabilizing task release policies for a human-in-the-lgapue

in [19, 18]. Bertuccelli et al [3] study the human supervisor

I ith re-look tasks. Th h ici . . : S
pontrp as a queue with re-look tasks ey study the pG“C'econsmered in Section 4. We pose the optimization problesns a
in which the operator can put the tasks in an orbiting queue fo

a re-look later. An optimal scheduling problem in the humantsr?eci'rati?) V\gmézeig@:ggfnq;eu\?v;v'tr;eliteenrlcznp(fgilg ir:mrﬁetge 4-
supervisory control in studied in [2]. The authors detemin prop : P Y

sequence in which the tasks should be serviced so that the a'tn-g horizon algprlthms f°T these o_pt|m|_zat|on prob_lems H.C'S
. o . ion 6. A real time adaptive algorithm is studied in Section 7
cumulated reward is maximized. Powel et al [16] model mixed : . .
. .~ "Our conclusions are presented in Section 8.
team of humans and robots as a multi-server queue and incor-
porate a human fatigue model to determine the performance of
the team. They present a comparative study of the fixed ang

rolling work-shifts of the operators.

The remainder of the paper is organized as follows. We déscus
some preliminary concepts in Section 2. We present the prob-
lem setup in Section 3. The static queue with latency perlty

. Preliminaries

The optimal control of queueing systems [22] is a classica|y, his section, we present some concepts that are usedtirou
problem in queueing theory. Stidham et al [13] study the 0Pyt the paper. We start with some models of human decision
timal service policies for a G/1 queue. They formulate & making, followed by some properties of sigmoid functions W

semi-Markov decision process, and describe the quaBté#- |56 the section with a discussion on receding horizon opti
tures of the solution. Certain technical assumptions ih &8  yization.

relaxed by George et al [8]. In contrast to the models dismliss

here, these studies assume identical tasks and submoéwar p

formance functions. Hemdez-Lerma et al [11] determine op- 2.1. Speed-accuracy tradgfa human decision making
timal servicing policies for the identical tasks and sonré/ar

rate. They adapt the optimal policy as the arrival rate imled. ~ Consider the scenario where, based on the collected ewdenc
the human has to decide on one of the two alternatiieand

In this paper, we study the problem of optimal time-durationH;. The evolution of the probability of correct decision has
allocation in a queue of binary decision making tasks with a&een studied in cognitive psychology literature [15, 4].
human operator. We refer to such queuesiesision making , . .

queues We assume that tasks come with processing deadlindseW s.model: The proba.bmt'y of deudmg on hypothesiﬁ,
and incorporate these deadlines as a soft constraint, paael given that hypothesibl, is true, at a given time€ Rxo is
tency penalty. We consider two particular problems. First, given by

consider a static queue with latency penalty. Here, the huma P(sayHi|Hy, t) =
operator has to serve a given number of tasks. The operator in
curs a penalty due to the delay in processing of each task. Thi
penalty can be thought of as the loss in value of the task over
time. Second, we consider a dynamic queue of the decisiopyift di ffusion model: Conditioned on the hypothesi4;, the
making tasks. The tasks arrive at a fixed rate and the operator eyolution of the evidence for decision making is modeled

incurs a penalty for the delay in processing each task. Ih bot as a drift-difusion process [4], that is, for a given a drift

__ P

1+e @b’

wherepg € [0,1], a,b € R are some parameters specific
to the human operator [15].

the problems, there is a tradé-between the reward obtained rateB € R.o, and a difusion rater € R, the evidence\

by processing a task, and the penalty incurred due to thé+esu  at timet is normally distributed with meast and variance
ing delay in processing other tasks. We address this platicu ot. The decision is made in favor éf; if the evidence is
trade-df. greater than a decision threshajcE R.o. Therefore, the

The major contributions of this work are as follows: (i) we de conditional probability of the correct decision at i

termine the optimal duration allocation policy for the state- f+oo g2
n

cision making queue with latency penalty; (ii) we pose an MDP P(sayHi|H1,t) = e 2% dA.
to determine the optimal allocations for the dynamic decisi
making queue and show that the MDP formulation is equivalent
to a certainty-equivalent problem:; (iii) we provide a sieplo-
cedure to determine a receding horizon policy for the cetyai
equivalent problem, namely, certainty-equivalent pgli¢y)
we establish performance bounds for the certainty-ecgival
policy; (v) we study an adaptive algorithm that incorposate
all the available information about the current tasks and im
proves the performance of the certainty-equivalent policy

we present a comparative study of the certainty-equivadeht
icy and the adaptive policy; (vii) we suggest some guidaline
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(a) Pew's model (b) Drift diffusion model

Figure 1: The evolution of the probability of the correct dé&an under Pew’s
and drift difusion model. Both curves look similar and are sigmoid.



2.2. Sigmoid functions Algorithm 1 Receding horizon optimization

1: at stag® € N, observe stat&(0)

2: Solve optimal control problem (2) and compute the optimal
control inputsu*(6), ...,u* (@ + N - 1)

3: Apply u*(0),and sep =6 + 1

4: Goto stept:

A doubly differentiable functiorf : R,o — R, defined by

f(t) = fon(®Z(t < ") + (D)7 (t > "),

is called a sigmoid function, wherigx and f.,, are monoton-
ically increasing convex and concave functions, respelgtiv
I(-) is the indicator function and™ e R.q is the inflection
point. The derivative of a sigmoid function is a unimodaldun
tion that achieves its maximum #&t. Further,f’(0) > 0 and
im0 f/(t) = 0. Also, lime,, 7 (t) = 0. A typical graph of
the first and second derivative of a sigmoid function is shown
Figure 2. From the derivative of the sigmoid function, itlisar
that the sigmoid functions are not submodular. Note that th
evolution of the conditional probability of the correct @gon
is a sigmoid function in Pew’s as well as driftidision model.

3. Problem setup

We consider the problem of optimal time duration allocafimn

a human operator. The decision making tasks arrive at a given
rate and are stacked in a queue. A human operator processes
these tasks on tHest-come first-servbasis (see Figure 3.) The
guman operator receives a unit reward for the correct degisi
while there is no penalty for a wrong decision. We assume that
the tasks can be classified according to theiidailty, and the
difficulty level takes value in an arbitrary sbtc RY, for some

g € N. For a decision made after processing a task wifh-di
culty d € D for timet, the expected reward is

N~ T \/ E[Leagh ] = P(sayHilHu. 1) = fq(t), 3)

Tmin nf tmax 0 51 5

wherefy : R.o — ]0, 1] is the sigmoid function associated with
@ () the task. Note that such reward structure corresponds to the

Figure 2: (a) First derivative of the sigmoid function and fenalty rate. A expected number of correct decisions.
particular value of the derivative may be attained at twidedént times. The ] ) ) . ]
total benefit, that is, the sigmoid reward minus the latenciajtgndecreases  We consider two particular problems. First, in Section 4, we

Up 1O tmin, iNCreases fronimin 10 tmay, and then decreases again. (b) Second consider a static queue with latency penalty, that is, tkee sc

32233332 r?:at;E ;ggﬁg;;ﬂﬂ%&ﬁﬂg@ positivelv of the second nario where the human operator has to perfotra N decision
making tasks, but each task loses value at a constant rate per
unit delay in its processing. Second, in Sections 5, 6, 7, we
consider a dynamic queue of decision making tasks where each

2.3. Receding horizon optimization task loses value at a constant rate per unit delay in its psace
ing. The loss in the value of a task may occur due to the pro-
cessing deadline on the task. In other words, the latencgifyen

Consider the following infinite horizon dynamic optimizati 5 5 soft constraint that captures the processing deadtiriee

problem: task. For such a decision making queue, we are interested in
. the optimal time-duration allocation to each task. Alteiredy,
maximize Z w(x(0), u(®)) we are interested in the task release_ rate that W|I_I resuhen_ _
) (1) desired accuracy for each task. We intend to design a dacisio

support system that tells the human operator the optima-tim
duration allocation to each task.

Remark 1 (Soft constraints versus hard constraint3he pro-
cessing deadlines on the tasks can be incorporated as hard co
straints as well, but the resulting optimization problernasn-
binatorially hard. For instance, if the performance of the h

In receding horizon optimization [6], the optimization pro Man operator is modeled by a step function with the jump at the
lem (1) is approximated by the following finite horizon opti- inflection point and the deadlines are incorporated as hamel ¢

subjectto x(¢ + 1) = ¢(x(€), u(¢)), x(0) given,

wherex(¢), u(¢) € R are the state and the control input at time
¢ € N, respectivelyy : R x R —» R is the stage cost, and
¢ : R xR — R defines the nonlinear evolution of the system.

mization problem at each stage N: straints, then the resulting optimization problem is eglgut to
the N-dimensional knapsack problem [14]. TNedimensional

0+N-1 knapsack problem idlP-hard and admits no fully polynomial

maximize Z w(X(£), u(f)) 5 time approximation algorithm fax > 2. The standard [14] ap-
=0 ) proximation algorithm for this problem has factor of optiitya

subjectto x(€ + 1) = ¢(X(¢), u(f)), x(#) given, N + 1 and hence, for larghl, may yield results very far from

the optimal. The close connections between the knapsatk pro
whereN e N is a finite horizon length. The receding horizon lems with step functions and sigmoid functions (see [244)}-su
optimization is summarized in Algorithm 1. gest that &icient approximation algorithms may not exist for



the problem formulation where processing deadlines are-mod_.emma 1 (Sigmoid function and linear penalty}or the opti-

eled as hard constraints. O mization problen(5), the optimal solution®tis
portommance t' € argmaxf(8) - ¢8| B € (0. f'(0)).
A Proof. The global maximum lies at the point where first deriva-
EE——

tive is zero or at the boundary of the feasible set. The first
derivative of the objective function i'(t) — c. If f/(t") < c,
0 then the objective function is a decreasing function of tand
queue length the maximum is achieved &t = 0. Otherwise, a critical point
is obtained by setting first derivative to zero. We note that
Figure 3: Problem setup. The decision making tasks arriverateal. These f’(t) = c has at most two roots. The second derivative con-
tasks are served by a human operator with sigmoid performanaeh @sk  gition yields that if there exist two roots, then only thegler of
loses value while waiting in the queue. . .
the two roots corresponds to a local maximum. Otherwise, the
only root corresponds to a local maximum. The global maxi-
mum is determined by comparing the local maximum with the
4. Static queue with latency penalty value of the objective function at the boundarg= 0. This
completes the proof. O

incoming tasks outgoing tasks

4.1. Problem description Definition 1 (Critical penalty rate) For a given sigmoid func-

Consider that the human operator has to perfofm N deci-  tion f and penalty rate < R.o, let the solution of the prob-
sion making tasks in a prescribed order (task labeled "1tkho €M (5) bet; .. The critical penalty rates is defined by

be processed first, etc.) Let the human operator allocase dur
tiont, to the taskl € {1,..., N}. Let the dificulty of the task/
bed; € D. According to the importance of the task, a Weight \qte that the critical penalty rate is the slope of the tangen
w, € Ry is assigned to the tagk The opergtor receives an ex- o sigmoid functiorf from the origin. O
pected rewarav, fq,(t;) for allocating duratiort, to the task’,

while she incurs a latency penaltyper unit time for the delay The optimal solution to problem (5) for fiierent values of
in its processing. Therefore, the expected benefit for fask ~ penalty ratec is shown in Figure 4. One may notice the op-
w, fo(t;) —co(ty +. . . +t,). The objective of the human operator is timal solution jumps down to zero at the critical penaltyerat
to maximize her average benefit and the associated optiorizat This jump in the optimal allocation gives rise to combinéibr

gt =supc e R.o | t7, € R.o}. (7)

problem is: effects in the problems involving multiple sigmoid functions.
1q "
maximize — Z W fg,(t) = (Co+ - +Cu)t),  (4)
teRY, N =1 ' 3
wheret = {ty,...,tn} is the duration allocation vector. s o
0 Penalty Rate
. . Figure 4: Optimal solution to the problem (5) as a functioninéér penalty
4.2. Opt'mal solution ratec. The optimal solution* — +co as the penalty rate — 0*.

We start by establishing some properties of sigmoid funstio
We study the optimization problem involving a sigmoid regvar
function and a linear latency penalty. In particular, gieesig-
moid functionf and a penalty rate € R., we wish to solve
the following problem:

We can now analyze optimization problem (4).

Theorem 2 (Static queue with latency penaltyfor the op-
timization problem(4), the optimal allocation to task’ e
{1,...,N}is

maximize f(t) — ct. ) t; e argmax{w, fg, (8) — (C¢ + -+ - + Cn)B |

teRso
o o o B € {0, fc};((C{’ +... 4+ Cn)/We)}
The derivative of a sigmoid function is not a one-to-one map-

ping and hence, not invertible. We define the pseudo-in&frse proof. The proof is similar to the proof of Lemma 1. O
the derivative of a sigmoid functiof with inflection pointt™, . ) - )
71 R.g — Rug by Remark 2 (Comparison with a concave utility) The optimal
N duration allocation for the static queue with latency pgndé-
: maxt € Ryo | f/(t) =y}, if ye]o, f/(t")], creases to a critical value with increasing penalty ratenth
fily) = 0 otherwise. (6) jumps down to zero. In contrast, if the performance function

is concave instead of sigmoid, then the optimal duratioo-all
Notice that the definition of the pseudo-inverse is constste cation decreases continuously to zero with increasinglpena
with Figure 2(a). rate. O



Example 1(Static queue and homogeneous taske)e human 5.1. Problem description

operator has to servé = 10 tasks and receives an expected re- i
ward f(t) = 1/(1 + exp(5— 1)) for an allocation of duration Assume that the human operator has to serve a queue of deci-

secs to a task, while she incurs a penalty 0.02 per sec for sion making tasks arriving according to Poisson procesis wit

each pending task. The optimal policy according to Theorem 5264 € Rso. We assume that each task is sampled from a prob-

is shown in Figure 5(a). The optimal policy drops some taské";]b“ity disftributioln flunctlion? :hD _’kRZO' wf;}erezl)( C Riis
initially, then processes the remaining tasks. The dunatlp- (e Set of diiculty levels of the tasks. Each task is assigned

cation increases with decreasing number of pending tasks. & Weight based on its importance. Two tasks that are equally
Example 2 (Static queue and heterogeneous taskge hu- difficult may have dTer_ent Welgh'FS. To _capture this feature,
man operator has to serd& = 10 heterogeneous tasks and re- V& 8SSUMe that the W?'ght assomate_d with a t"".S." wf.ﬂa:(-iity
ceives an expected rewafg(t) = 1/(1 + exp(-art + by)) for an leveld is a random vanablwd € R.o with probab|llty distribu-

g 1 1 W . n a; n ax
allocation of duration secs to task, whered, is characterized 10N functionpy - [wy'™, wg™] — Rso, wherew™, wi'®* € R.o

by the pair &,by). The following are the parameters and the are given constants. Similarly, let the latency penaltpeissed
weights associated with each task: with a task with dfficulty leveld be a random variable € R

with probability distribution functiorpg : [cdm‘”,cg“”‘] — Rso,
(as,....an) = (1,2,1,3,2,4,1,5,3,6), wherec", c'® € R are given constants. Let the realized
(b by) = (5.10,3,9, 8, 16,6, 30,6, 12), and difficulty level, importance, and latency penalty rate for tAsk
o Tm e em e s bed,, wy,, andcy,, respectively. Thus, the operator receives an
(Wi, ....wn) = (2,5,7.4,9,3,5,10,13 6). expected rewardv, fq, (t/) for a duration allocatiort, to task
¢, while she incurs a latency penailty, per unit time for the
delay in its processing. Note that while designing a denisio
¢ = (0.09,0.21 0.21 0.06,0.03, 0.15,0.3,0.09, 0.18, 0.06) making queue, the true realizations of the random variaies
not known and only expected values are at designer’s disposa
per second. The optimal allocations are shown in Figure. 5(b)rherefore, we construct the value function with the exmécte
The importance and fliculty level of a task are encoded in the values over realizations of the queue. We define the expected
associated weight and the inflection point of the assockiged ~réward functionf : R.o — ]0, 1[ and the expected penalty rate
moid function, respectively. The optimal allocations degpen €€ R0 by

Let the vector of penalty rates be

the difficulty level, the penalty rate, and the importance of the _ 1 B
tasks. For instance, task 6 is a relatively simple but leg®im f(t) = ZEp[Epy[wal fa(t)] and ¢ = Ep[Ep[cqll.
tant task and is dropped. On the contrary, task 8 is a relgtive ) _
difficult but very important task and is processed. 0 respectively, wherev = Ep[Ep[wg]] and E.[] represents the
expected value with respect to the measurdote that these
expressions assume thaf, d, andcy are statistically indepen-
g4 L dent.
ol 1 S
B T T T T T w1 We denote the queue length at the beginning of processikg tas
e fosk ¢ € Nbyn, € Z.o. The objective of the operator is to maximize
(2) Homogeneous tasks (b) Heterogeneous tasks her infinite horizon expected reward. For any allocatipto

task¢, the queue length evolves according to a Poisson process
Figure 5: Static queue with latency penalty. For homogeneasks, the opti- ~ and hence, it is Markovian. We now formulate the optimizatio
mal policy drops some tasks initially and then processes timaireng tasks. problem as an MDP. We construct such an MDP, narﬁewith
The duration allocation increases with decreasing quengthe For heteroge- the action space as the set of durations that can be allcaated
neous tasks, the optimal allocations depends of thiedity level, the penalty . .
rate and the importance of the tasks. the state space as thdiiiulty level of the tasks in the queue.
We define the reward : D x R" x R x R.g — R obtained by

allocating duratiort to the task/ by

5. Dynamic queue with latency penalty: problem descrip- t+ne=1 G-l
tion and properties of optimal solution re(de, €, Wa,, ) = Wy, fa, (t) - §< Z Gy + Z Ca, t
i=C i=¢

In the previous section, we developed policies for statieugu  wheren, € N is the queue length just before the end of process-
with latency penalty. We now consider dynamic queue with laing of the task/ € N andc € R™ is the vector of penalty rates
tency penalty, that is, the scenario where the tasks arcivare-  for the tasks in the queue. Note that the queue length while
ing to a stochastic process and wait in a queue to get pratesse task is processed may not be constant, therefore the yatenc
We assume the tasks lose value while waiting in the queue. Theenalty is computed as the average of the latency penalty for
operator’s objective is to maximize her infinite horizon egd:  the tasks present at the start of processing the task and-the |
In the following, we pose the problem as an MDP and showtency penalty for the tasks present at the end of procedsing t
that the infinite horizon average value formulation of the RID task. Such averaging is consistent with expected numbet of a
is equivalent to a deterministic dynamic optimization peoi. rivals being a linear function of time for Poisson process.



For a duration allocatioly to taské € N, the transition proba-  (i). the MDPT admits the same optimal policy &3);
bility from queue lengtm, € Zso to queue lengtim,,1 € Zso  (ii). the optimal policy allocates zero duration to the first task

is if nig > Nmax; _
. iii). the optimal policy allocates a duration less thah(c/w
t[ 0, if np,1€{0,...,n, =2}, (if) to eagh taskp y e/w)
NeNee1 — ~ Aty ()"t P ’
SR sy o otherwise.

The MDP with finite horizon lengthl € N maximizes the value Proof. We start with the definition oVayg;

functionVy : N x Rj) — R defined by
Vavg(N1, t) = |lm —Z]E[I'/(df,nf, g, te)Ing]

N
V(. 1) = ;E[rg(df, C. Wq,. tr) ma], ®) . M[ o
_ h _ _ = lim — Z]E[Wd, fa, (te) — ZC, +Z:cJ t['nj_]
wheret is the vector of allocations to each task amdis the N—-+eo N =1 iz
initial queue length. N
= im LN W) - Sam / 10
The infinite horizon average value function of the MDP, de- = omN Z (t) - 2¢ [ne + relm]te (10)
noted byVayg : N x RN, — R, is defined by f:ll
N 1 _= 1_
] 1 = lim — wf(t;) — =c(2ZE[(n;|n{] + Atp)t,
Vg, ) = lim V(i 1), N N 24 (t) 5 (2E[(n¢[ng] + Ate)t,
N—+o0 N
N 1_ )
We study the MDA under the following assumptions: =Jim 3 ZWf(tf) CE[nInte — 5eaty,

Assumption 1(Non-empty queue) Without loss of generality,
we assume that the queue is never empty. If queue is empty ahere equation (10) follows from the Wald’s identity [9] and
some stage, then the operator waits for the next task toearrivthe expected evolution of the queue length is determinetidy t

and there is no penalty for such waiting time. Poisson arrival and the deterministic service proceskasig,
Assumption 2 (Sigmoid average performance)We assume
the average of the sigmoid functiofiss a sigmoid function. E[Nnz:alm] = max0, E[n ] — 1+ atg}, V€€ {1,...,N}.

Remark 3 (Sigmoid average performance)Assumption 2
is justified in several contexts. For empirically obtainégt s
moid functions,f can be obtained by fitting a sigmoid func-
tion through averaged empirical data. In the context ofgleni
making tasks, the performance of the operator on each task & prove the second statement, we note that under Assump-
modeled by a drift-dfusion process, and the average of a setion 1, E[n;m] = ny - £+ 1 + /lZf;}tJ and thus, the value

of drift-diffusion processes is again a driffidsion process. function is:
Hence, the average performance is well modeled by a sigmoid N

Therefore, the infinite horizon average value formulatibthe
MDP and the certainty-equivalent problem are identicalisTh
establishes the first statement.

. cAt?
function. O (1) = ) (Wh(t) - Sm — £+ 1)t - cat, Z tj - T)‘
=1 j=1
5.2. Properties of optimal solution We write Vi = Vone + Viem WhereVone : N x R — R and
. N .
We now study some properties of the MDRand its solution ~ Vrem : N X R, — R are defined by
that will be used later in the paper. Before we establishethes , — =
Ny, t1) = wf(ty) — cmty,
properties, we introduce the following optimization preioi, onelz. 1) N (t) t
which we refer to as the certainty-equivalent [1] problem: Viem(Mo, 1) Z (va_(t )= Gy — £+ 1)t
rem\l1, L) = ) — 1 4
. N A P cat? =2
maximize Nﬂmo N Z(Wf(t[) — CE[ng|n]t, — T) - - 1t C/lt2 c/ltz
=1 (9) -C gZ j
subjectto E[ng1|n;] = max0, E[n,ni] — 1 + At}
tr>0,¥leN. Note thatVien, is a decreasing function of and from Lemma 1

, — . . we know that, forcm /w > ¢f, Vone achieves its global maxi-
We also defindma, = [Wg/Cl. We will Show thatNmax is the mum att; = 0. HenceVy achieves its maximum &t = 0 for

maximum queue length at which the optimal policy aIIocates_ /W > of that is, the optimal policy drops the first task if
non-zero duration to the first task. We now state some proper

n; > Wgi/C. Since,n; is a non-negative integem; > Wg:/Cis
ties of the MDPI equivalent ta; > N
Lemma 3 (Properties of MDA"). Under Assumption 1 and 2, q 1~ Hmax
the following statements hold for the MOPand its infinite  To establish the last statement, we note that the fun&figsis
horizon average value function: a decreasing function daf, for all t; > f7(C/W), andV,em is a



decreasing function df, for all t; > 0. Hence the maximum problem. Under Assumption 2, we trehtas a sigmoid func-
allocation to any task i$"(c/w). [0  tion. For the ease of notation, we dendtandc/w by f and

¢, respectively. We now introduce the following finite horizo
One of the key implications of Lemma 3 is that the solution ofoptimization problem that needs to be solved at each stage in
the MDPT is identical to the solution of a deterministic dy- the receding horizon framework:
namic optimization problem. Although this reduces the com-
putational complexity significantly, the computationaktto
determine the optimal policy still grows exponentially kvthe
size of the state space and the action space. We now exploit
the results in Lemma 3 to reduce the dimensions of the state
space and action space of the MDPWe construct a reduced
MDP, namelyT'\eq, by restricting the action space to the possi-
ble allocations by the optimal policy and by aggregatingtedl ~ Under Assumption 1, the constraint in the optimization prob
queue lengths at which the optimal policy allocates zeradur lem (11) yields:
tion to the current task into one sta¥,x + 1. Thus, picking
the new action space as [0 (c/w)], and the new state space as
{0, ..., Nmax+1}. The new transition probabilities for allocating
durationt, to task¢ are defined by:

N

o1 ; cAt?
ma>t<2|5n|ze N ;( (t7) — cE[ngnq]t, — T)

subjectto E[ng1|n;] = max0, E[ngn;] — 1 + At,},

(11)

wheret = {ty,...,tny} is the duration allocation vector.

(-1
E[nglnl] = -C+1+ /lztj.
=1

Substituting the expected queue length into the objectine-f

0, if N1 €40,...,n, =2}, tion in the optimization problem (11), one obtains the fimct
Py, = e—m%’ if s €N =1, .., Nimals J: RY, > R defined by
1- il if Neg = N+ L. LN N oz
The reward functiom, : NxR5o — R for allocation of duration IO = N [Z:; (f(tf) ~Clm = E+ Dt -ty j_lz’j:#tj - T)

t, to taske is defined byr (n,, t;) = wf(t;) — cnet, — CAt?/2. We
can now state the following equivalence. wherec is the expected penalty ratejs the arrival rate, and;
Corollary 4 (Reducing the action space and the state spacejs the initial queue length. Thus, the optimization probigr)
The Markov decision processesandI¢q yield the same opti- is equivalent to

mal policy. ma>t<>i5nize J(1). (12)

Proof. It can be verified that the value function for the two |4 the remainder of Section 6.1, we propose a procedure to

MDPs is the same. The reduction of the action space and th§stermine the solution of the optimization problem (11). To

state space follows from Lemma 3. L) develop this procedure, we study some properties of the opti
mal policy. Assume that the solution to the optimizationkpro
lem (11) allocates a strictly positive time only to the tagks

6. Dynamic queue with latency penalty: receding horizon the setTproc € {L...., N}, which we call theset of processed

algorithm tasks (Accordingly, the policy allocates zero time to the tasks

in{1,...,N}\ Tpro0). Without loss of generality, assume

As discussed in the previous section, the computation afjphe

timal policy for infinite horizon average cost MDP problen) (9 Tproc := {111, -+ > 1im}

is expensive and grows exponentially with the dimensiomef t

state space and action space. We rely on the receding horiz

framework discussed in Section 2 to develop an approximatio

algorithm to determine the solution of the MIDRn finite time. ﬁllocate%ngn-zerct)_ dure;non. . int th timi
As discussed in Algorithm 1, the receding horizon framework emma 5 (Properties of maximum pointsyor the optimiza-

solves a finite horizon optimization problem at each iterati ;uon. prot;letm(lZ)i a;dlda} set of processed taskpro, the fol-

We now study such finite horizon optimization problem for the owing statements hold:

certainty-equivalent problem (9). (). aglobal maximum point” satisfy f >t; >... >t ;
(ii). alocal maximum point™ consistent With o Satisfies

(\M’lerenl < --- <gmandm < N. A duration allocation vector
tis said to be consistent witfi,oc if only the tasks ir/ o are

6.1. Finite horizon optimization

We now study the finite horizon optimization problem with
horizon lengthN that the receding horizon policy solves at each (13)
iteration. It follows from Lemma 3 that the MDP formulation (ji). the system of equatioif$3) can be reduced to

is identical to the certainty-equivalent problem. Therefave

focus on the solution of the finite horizon certainty-eqléva f'(t;) = Pt ). and §, = F1(f'(t]) - clm — m)).
7

m
£(t]) = ol — i+ 1) + Cﬂth]i, forallk e {1,...,m);
i=1



for each ke {2,...,m}, where® : R,o —» RU{+o0} is  We refer to the functioP as theeffective penalty ratdor the

defined by first processed task. A typical graph #fis shown in Fig-
., ure 6(b). GivenT e, @ feasible allocation to the task is
P(t) = p(D). it () 2 C(tm = 111). such thatf’(t,,) — c(; — n1) > O, for eachj € {2,..., m}. Fora

+00, otherwise, givenT proc, We define the minimum feasible duration allocated

where ) = cln - +L+AteA S0, (PO -cpon)y; 1O 13 (See FIgure S@)bY

(iv). alocal maximum point” consistent with . satisfies min{t € Rso | £/(t) = clgm —m1)}. i /(") > c(ym — n1)
f”(t,) <ca, forall ke{l,....m}. " {O, otherwise.
Proof. We start by proving the first statement, Assunes t, Let f,,, be the maximum value df’. We now define the points

and define the allocation vectoconsistent with proc by at which the functiorf”” —cA changes its sign (see Figure 2(b)):

v, i (L. m\ (K, _ _
C=dv ifi—k _min{te Ryo | f7(t) = ca), if ca e [f7(0), frad,
R Y o otherwise

v, ifi=] ’ :

It is easy to see that

It = I(0) = O - mI(t;, ~ t,,) < 0.

This inequality contradicts the assumption tivais a global
maximum ofJ.

5, . [MAERu | 170 = cl), i €< Ty
2 0, otherwise.

71 i . Allocation to first processed task
Allocation to first processed task

o

Rew. & pen. rate

To prove the second statement, note that a local maximum is
achieved at the boundary of the feasible region or at the sel
where the Jacobian dfis zero. At the boundary of the feasible
regionRgo, some of the allocations are zero. Given theon-
zero allocations, the Jacobian of the fun(.;tmprOJECted onthe igure 6: (a) Feasible allocations to the second process&gtrametrized by
space spanned by the non-zero allocations must be zero. Tg‘l@ allocation to the first processed task. (b) The penaleyaad the sigmoid
expressions in the theorem are obtained by setting the iarcob derivative as a function of the allocation to the first task.

to zero. Theorem 6 (Finite horizon optimization) Given the optimiza-
tion problem(12), and a set of processed tasKgoc. The fol-
lowing statements are equivalent:

Alloc to 2nd proc. task
or—m—

@) (b)

To prove the third statement, we subtract the expressiogqua-e
tion (13) fork = j from the expression fdt = 1 to get
£(t,) = F(t,,) - (i — 11)- (14) (i). there exists a local maximum point consistent Wighc;
_ ]_’ " ) : _ (i). one of the following conditions hold

There exists a solution of equation (14) if and onlyft,,) >

cnj —m)- If f'(t,) < c(nj — 1) + /(0), then there exists f/(62) > P(62), or (15)
only one solu'tlon. Othe'rW|se, there_eX|st tyvo solutionscal f'(r1) < P(r1), F'(61) = P(61), andsy > 71. (16)
be seen that if there exist two solutiotfs with t7 < tf, then

tj < b, < tj. From the first statement, it follows that only proof, A critical allocation to tasky, is located at the inter-
possible allocation is;. Notice thatt; = f'(f'(t,) — c(nj -  section of the graph of the reward ratt,,) and the &ec-
n1)). This choice yieids feasible time allocation to each taskijye penalty rateP(t,,). From Lemma 5, a necessary condi-
nj-j € {2,....m} parametrized by the time allocation to the tjon for the existence of a local maximum at a critical post i
taskn;. Atypical allocation is shown in Figure 6(a). We further f”(t,,) < ca, which holds fort,, € ]0,61] U[62,00[. It can

note that the ffective penalty rate for the tagi isc(n; 71+ be seen that if condition (15) holds, then the functio(t,,)
1) + cA X, t,,. Using the expression dfy,j € {2,...,m},  and the &ective penalty functioP(t,,) intersect in the region

parametrized by, , we obtain the expression f@t. [62, oo[. Similarly, condition (16) ensures the intersection af th
To prove the last statement, we observe that the Hessiar of ﬂgraph of the rgward fuqct|om’(tnl) with the efective penalty
functionJ is function®(t,,) in the region ]044]. O
2
o°J = diag(f” (t;,), - - -, ' (t;)) — CAlml), We now provide a procedure to determine the solution to the op
ot timization problem (12). Given a sequence of zero and noa-ze

where diag( represents a diagonal matrix with the argumentallocationsz € {0, +}N, we denote the corresponding critical al-
as diagonal entries. For a local maximum to exist at non-zertocation for maximum byt(¢). The details of the procedure are
duration allocationgt,,, ..., t,,}, the Hessian must be negative shown in Algorithm 2. We refer to the policy obtained from
semidefinite. A necessary condition for Hessian to be negjati receding horizon algorithm that solves the optimizatioabpr
semidefinite is that diagonal entries are non-positive. [ lem (12) at each stage as tbertainty-equivalent policy.



Algorithm 2 Finite horizon allocation algorithm (). the average value function satisfy the following upper
1: givenng, N, c, A bound
2: k:=0;A = ¢;

3: for eachstringé € {0, +}N

Vavg(ne. t) < WE(7(C/wW)) — Ef7 (/).

g ;eéréﬁrc(j’icti::n{i(lz{)lc’)}'(.l, 6'\)” 16 =+} for each n € N and any non-negative sequerice
6: then determine critical allocations for maximuﬂg (ii). the average value function satisfy the following lower

' via bisection algorithm bound for any certainty-equivalent policy:
7 determine allocations

P . V, Ny, %) >
th = f7(f'(t,,) - ctry —m0)). j € {2.....m) avﬁ( 1 1) s

8: determine expected queue lenditin,], € € {1,..., N} W (Tmax) — CTmax — = e, if0<a< #x

. H _— 1.2 )
0 LLéErErg - ;’t\ﬁtef(ffl)’}' - a7 (W (Tmin) = 77max — =), otherwise,
11: optimal allocationt” = argmax, 5 J(t) for each n € N, wherermay = f7(C/W) andrmin = f7(s7).

) ) ) Proof. We start by establishing the first statement. We recall
Remark 4 (Computational complexity of Algorithm 2)Inthe 5 | emma 3 that the value functiovkg is identical to the

worﬁt case, Algorithm 2 requires a comparison of the saiutio gpiective function of the certainty-equivalent problen), (9at
of 2% -1 optimization problems. Although the number of worst- ;¢

case comparisons grows exponentially with the chosen dworiz
lengthN, it remains reasonable for fairly large horizon lengths

ol o _
(N < 10). O Vau(, ) = im = > Wi (t;) - CE[neIni]t, — Cat7/2
t

M=z

Remark 5 (Comparison with a concave utility) With the =1

increasing penalty rate as well as the increasing arriv@l, ra I _
the time duration allocation decreases to a critical valug a < N'L”Joo N ZWf(t‘) - ct
then jumps down to zero, for the dynamic queue with latency R _H o
penalty. In contrast, if the performance function is cormca < wf(f'(c/w)) - cf'(c/w).

stead of sigmoid, then the duration allocation decreasetinco

uously to zero with increasing penalty rate as well as irgirep

arrival rate. O In order to determine a lower bound, we construct following
allocation policy:

where the last inequality follows from Lemma 1.

Tmax 0< A< 1/Tmax
el otherwise,

low
We now derive performance bounds on the certainty-equivale te
policy. First, we determine a global upper bound on the per- _
formance of any policy for the MDFP. Then, we develop a for each{ € N, Wheret§tat e argmaxwf(B) —cnB | B €
lower bound on the performance of the unit horizon certainty {0, f'(n,c/w)}} andn, = E[n/n;]. We note that the unit
equivalent policy, that is, the policy obtained from theading  horizon certainty-equivalent policy allocates duratil‘jf‘it €
horizon algorithm that solves optimization problem (11jhwi argmaxwf (t)—cnyit—CAt?/2 | t € Ry} to taskl € N. Therefore,
horizon lengthN = 1 at each iteration. The performance of _ - L . o,

the unit horizon certainty-equivalent policy provides avdo W (t;™) — cn ™ — cat™™/2 > wi (") — en 2" — cat™”/2
bound to the .pt.arformgnce of any cgrtainty—equivalent yolic — Vayg(N1, 1) > Vayg(ng, tO%).

that solves a finite horizon problem with horizon length> 1

at each stage. Ldt®C be the sequence of duration allocations
under a certainty-equivalent policy. Without loss of gexigy,

we assume that the initial queue length is unity. If the ahiti
gueue length is non-unity, then we drop tasks till queuetteng
is unity. Note that this does noffact the infinite horizon aver-
age value function. We also assume that the latency pemalty
small enough to ensure an optimal non-zero duration allacat
if only one task is present in the queue, thatdss wgi. We  In the second case, we note that the maximum allocation to eac
now derive a lower bound on the performance of the unit horitask under the constructed policyrigax and hence, the maxi-
zon certainty-equivalent policy, which is also a lower bd@m  mum number of expected arrivals while processing curresht ta
the performance of any certainty-equivalent policy. IS ATmax. IN the worst possible caselrmax] — 1 tasks would be
Theorem 7 (Bounds on performance)or the Markov Deci- dropped before next task is served. Further, the duration al
sion Proces$’, and any certainty-equivalent policy the follow- cation to the task is in the intervatin, Tmax] and the penalty
ing statements hold, providexd< wg: € < Wgi: Thus, the lower bound follows. O

6.2. Performance of receding horizon algorithm {

We first consider the case when€© 1 < 1/tmax. The con-
structed policy allocates duration,ax to each task. For the
certainty-equivalent problem, a new task arrives in time %
Tmax that is, after servicing the current task, the queue ieeith
empty or has one task. Therefore, the expected reward for eac
task iswt (Tmax) — CTmax — CAT2,,/2.



We now elucidate on the concepts discussed in this sectithn wiical arrival rate and then starts decreasing quickly. Thitsc

an example. cal arrival rate corresponds to the situation where a nekvisas
Example 3(Certainty-equivalent policy) Suppose that the hu- expected to arrive as soon as the operator finishes progessin
man operator has to serve a queue of tasks with Poisson ahe current task. For the set of data considered, the berefit p
rival at the ratel per sec. The set of the tasks is the same asinit time achieves its maximum at this critical arrival rata

in Example 2 and each task is sampled uniformly from thisgeneral, it is not true and this maximum may be achieved at a
set. For this set of data, the average performance functiomalue higher than the critical arrival rate. Thus, the alrrate

is f(t) = w/(1 + eP) wherew = 6.4, a = 1.0853, and maximizing benefit per unit time may result in poor average de
b = 4.3027. The average penalty ratecis= 0.1380 per sec- cision quality on each task. The objective of the designéw is
ond. The certainty-equivalent policy that solves probldm)( achieve a good performance on each task and therefore,-the ar
with horizon lengthN = 10 at each stage is shown in Figure 7. rival rate should be picked close to the critical arrivakratt

It can be seen that the certainty-equivalent policy dropsemo can be verified that the critical arrival rateligi; = 1/ f"(2c/w).
tasks at higher arrival rates and tries to maintain a sirggllein ~ In general, there may be other performance goals for theaeper
the queue. The performance of the certainty-equivalentyol tor, and accordingly, higher task arrival rate for the quemdd
along with the global upper bound on the performance of anype designed. O
policy and the lower bound on the performance of any cegtaint
equivalent policy is shown in Figure 8. As expected, for th ..

o 1
low arrival rates the certainty-equivalent policy acheeeper- 33 i':fo_s """"""""""""""""""
formance very close to the global upper bound. O " S gy
) 05 1 2 9 05 1 15 2
Arrival Rate Arrival Rate

Figure 9: Expected benefit per unit task and per unit time ovari@ hori-
zon under certainty-equivalent policy. The dashed-ddttedk, solid red and
dashed green curves correspond to latency penaltids Q025, and M5, re-

Allocation
Q w o]
Queue Length
o ?

5 10 Taskl 20 25 0 5 10 Task 15 20 25 SpeCtiVer.
(a) Low arrival rate
g’ N 7. Dynamic queue with latency penalty: receding horizon
23 gy algorithm with real time information
< =]
G0 5 10 15 20 25 © 00 5 10 15 20 25
Task Task

We studied the receding horizon policies for the certainty-
(b) Moderate arrival rate equivalent problem which is identical to infinite horizon-av
. s erage cost formulation of the underlying MDP. While design-
ing the decision making queue, the true realization of tbksta
. . and the associated latency penalty and importance is netrkno
e O 205 Therefore, the policy is designed for the expected evatutib
the queue. In particular, the computation of the value func-
tion in equation (8) involved the expectation over realad
Figure 7: Certainty-equivalent policy. An optimization ptem with horizon of the queue. In rea‘,l time, the '”ermat'f)” about the nature
lengthN = 10 is solved at each stage. The arrival rates for the thremsics ~ Of the current tasks in the queue is available and should be
ared = 0.25,0.5 and 1, respectively. incorporated in the value function. We incorporate thioinf
mation in the following way. We define new value function

Vi RS, X RSy x RS, x RN, - R by

Allocation
Queue Length

(c) High arrival rate

N
VR w, C. 1) = > Elre(dr, € W, I,
(=1

Performance

whereRY, represents sequences of positive real numisers,
represents the sigma algebra containing all the informatio
Figure 8: Bounds on performance. The solid red curve reptesea average  available when task is processedd,w, and C are the se-

value function under certainty-equivalent policy, thetdassdotted black line quences of realizedﬂiiculty levels WeightS and Iatency penal-
represents the er bound on any policy and the dashedgreerepresents . . ' '
P Hpper bou Y pollcy @ieaTep ties, respectively.

the lower bound on any certainty-equivalent policy.
Discussion 8(Optimal arrival rate) The performance of the With the real time information, the infinite horizon average
certainty-equivalent policy as a function of the arrivaterss  value function of the MDRVS - RS, x RS, x RS x R, — R
shown in Figure 9. It can be seen that the expected benefit p&t defined by

unit task, that is, the value of the average value function un

der the certainty-equivalent policy, decreases slowlatitrit- Vg (d.w,C. t) = Jim NV{JZd(d, w, C, 1).

10

Arrival Rate



In the spirit of Section 6, we develop receding horizon algo-evolution of the queue at an arrival rate= 0.5 per second are
rithms to maximize‘,\/g\fg. We solve the associated finite horizon shown in Figure 10 and 11, respectively. The adaptive policy
problem using dynamic programming with discretized actiontends to drop the tasks that ardhdiult and unimportant. The
and state space. difficulty of the tasks is characterized by the inflection point
Remark 6 (Finite horizon problem) It can be verified that of the associated sigmoid functions. Due to the heterogeneo
the finite horizon problem associated with the maximizationnature of the tasks, the queue length under the adaptive pol-
of V;'\fg is similar to the optimization problem (11), but due icy is larger than the queue length under certainty-eqeival

to the non-identical nature of the tasks, the allocationthéo policy. The queue length under the adaptive allocation pol-
processed tasks can not be parametrized as a function df the &y with horizon length 1 is higher than the adaptive allomat
location to the first processed task (see Lemma 5). Thus, thgolicy with horizon length 10. A comparison of the certainty
search for the optimal allocation can not be reduced to a bne dequivalent policy and the adaptive allocation policieshieven
mensional search. This makes the extension of the techmiquén Figure 12. We obtained these performance curves through
in Section 6 to the maximization Mg\fg intractable. Therefore, Monte-Carlo simulations. It can be seen that the adaptiee al
we utilize dynamic programming with discretized action andcation policy improves the performance significantly owes t
state space to approximately solve the finite horizon prolole  certainty-equivalent policy. Interestingly, the perf@mnce of
Before we present the receding horizon algorithm, we intoed t?heef[;??ﬁgﬁiﬁg?ggg;gﬂ%ﬁ;g Etogf)ﬂz;én% s,lillsoz;f

few notations. An anglogous _argument to_ the one in L_emma hg the available information significantly improves thefpe
shows that under optimal policy the maximum allocation to a

sigmoid functionf with latency penaltg and weighivis upper mance. -
bounded byf " (c/w). We define the maximum allocation to any

sigmoid function byomax = supl (I /wh™) | d € D). Given B
horizon lengthN, current queue length, < N, the realiza- g ‘ |]|| ”] i ]‘] | : Ih””hmh il H
tion of the sigmoid functiondy, . .., f,,, the associated latency S5 10 e dS 2 e [ - 20 25
penaltiescy, ... ., ¢, and importancevs, ..., w,,, we define the
reward associated with tagle {1,..., N} by i e
g ¢ £ 3
e sjen, Fltaflelll Hl00 )
ri exp . a7 0 s 1015 20 25 5 51 15 2 %
ri ifng+1<j<N, as
WhererE'Zd =W fj (tj) - (er‘:f] c + (E[nj] -n, — J + 1)6)'{]' — Figure 10: Adaptive policy for aample evolutiof the dynamic queue with

_ - — . — latency penalty. An optimization problem with horizon lem$t = 10 is solved
2 exp _ ) ) 2
cAts/2, andr;™ = wf(tj) — c(n, — j + 1)tj — CAt§/2. We nOW 5 cach stage.

formally introduce this dynamic programming based aldponit

in Algorithm 3, and refer to it aadaptive allocation algorithm.
This algorithm incorporates the precise information ofttsks
currently waiting in the queue while processing each tagk an
thus adapts the allocation policy as new information become
available. We will now provide numerical evidence to show
that adaptive allocation policy improves the performaneero

the policies discussed in Section 6. 12 l ] I I I |
% 1 5

Algorithm 3 Adaptive Allocation Algorithm ] “”U‘”UT‘&L‘L‘ ”Jo‘lhzs
1. Given: fg4,d € D, horizon lengthN, arrival rated, setf = 1
2: For task( determine queue Ienghhy, SIQmOId functions Figure 11: Adaptive policy for gample evolutiomf the dynamic queue with

_and penalty rate§, ¢ for each task € {1,...,n} latency penalty. An optimization problem with horizon lemgt = 1 is solved
3 ifn, <N at each stage.

4:  setstage rewards using equation (17)j € {1,..., N},
5: elseset stage rewards, for eagle {1,..., N},
ri=w;fi(t;) - (S ¢ + (E[nj] - n,— j + 1)0)t; —cat?/2.
6: solve the finite horizon DP with appropriately discretized
allocationstj € [0, dmax, for eachj € {1,..., N}

-

Allocation
onN b D
Queue Length

i n il

Task

Tl L

@

Weight
D

Inflection Point
@

N

Benefit Rate
[

2

. 0.5 1 2
7: allocate duratiort; to the task’ ° % amirae : Avival Rate
8: setf = ¢+ 1 and go to step: Figure 12: Empirical expected benefit per unit task and pertime. The

dashed-dotted black curve represents the adaptive atlagaslicy with hori-

Example 4 (Adaptive allocation policy.) For the data in Ex- zon length 10, the solid red curve represents the adaptvesgibn policy with

ample 3, we now study the adaptive allocation policy. Adapti horizon length 1, and the dashed green curve representsrtiagty-equivalent
- e . . ’ policy with horizon length 10, respectively.

allocation policies with horizon length 1 and 10 for a sample
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8. Conclusions

(23]

We presented optimal servicing policies for the queues &her
the performance function of the server is a sigmoid function[14]
First, we considered a queue with no arrival and a IatenC){
penalty. It was observed that the optimal policy may dropesom 15]
tasks. Further, for identical tasks, the duration allagatio |1
the task increases with the decreasing queue length. Second
a dynamic queue with latency penalty was considered. We first
studied the scenario where no real time information abaait th!
evolution of the queue was available. This models the stnat ;g
of the designer who has no information about the true realiza
tion of queue at her disposal. A receding horizon algorithas w
established for the certainty-equivalent problem and gjinds [19]
for choosing the arrival rate were suggested. We then studie
the scenario where real time information about the reatinat [20]
of the queue was available. An adaptive allocation algorith
that incorporated all the available information about theent
tasks into the allocation policy was developed. A compariso
of the certainty-equivalent policy and the adaptive altmra
policy was presented.

[21]
(22]

(23]
The decision support system designed in this paper assumgs,
that the arrival rate of the tasks as well as the parametehein
performance function are known. An interesting open proble
is to come up with policies which perform an online estimatio
of the arrival rate and the parameters of the performance- fun
tion and simultaneously determine the optimal allocatiok p
icy. Another interesting problem is to incorporate more ham
factors into the optimal policy, for example, situationalaae-
ness, fatigue, etc. The policies designed in this paperaely [27]
first-come first-serve discipline to process tasks. It wdndaf
interest to study problems with other processing discjflas
example, preemptive queues.
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